ИНСТРУКЦИЯ по применению

"ИПС-Биотехновация"

Питательные среды микробиологические, сухие

1. НАЗНАЧЕНИЕ

"ИПС-Биотехновация" представляет собой сухие питательные среды, предназначенные для приготовления жидких и плотных питательных сред, используемых при проведении микробиологических исследований.

2. СОСТАВ И КОМПЛЕКТАЦИЯ

Выпускается в виде следующих отдельных сухих сред:

2.1. Среда Кода. Питательная среда для выделения и дифференциации энтеробактерий, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок желтого цвета.

Состав (в пересчете на 1 л готовой среды):

Пептон ферментативный сухой	- 13,0 г.
Натрия хлорид	- 6,6 г.
Лактоза	- 10,0 г.
Сульфанол	- 2,2 г.
Бромтимоловый синий, индикатор	- 0,05 г.
Натрий углекислый	- 0,28 г.

2.2. Среда Левина. Питательная среда с эозин-метиленовым синим для выделения и дифференцирования энтеробактерий, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-сиреневого цвета.

Состав (в пересчете на 1 л готовой среды):

Пептон ферментативный, сухой	- 10,0 г.
Экстракт автолизированных дрожжей осветленный	- 1,5 г.
Лактоза	- 10,0 г.
Натрий фосфорнокислый двузамещенный	- 2,0 г.
Агар микробиологический	- 13,0 г.
Натрия хлорид	- 3,0 г.
Эозин натрия, индикатор	- 0,4 г.
Метиленовый голубой, индикатор	- 0,075 г.

2.3. БТН-Эндо-агар. Питательная среда для выделения энтеробактерий и их дифференциации по признаку ферментации лактозы, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок серо-сиреневого цвета.

Состав (в пересчете на 1 л готовой среды):

Пептон ферментативный сухой	- 10,3 г.
Гидролизат соевой муки	- 7,0 г.
Экстракт автолизированных дрожжей осветленный	- 1,0 г.
Д(+)-лактоза	- 10,3 г.
Фуксин основной для МБЦ	- 0,25 г.
Натрия сульфит безводный	- 2,4 г.
Натрий фосфорнокислый двузамещенный	- 0,7 г.
Натрий углекислый	- 0,7 г.

 Натрия хлорид
 - 4,1 г.

 Агар микробиологический
 - 11,3 г.

2.4. Среда с малонатом натрия. Питательная среда с малонатом натрия для дифференциации энтеробактерий, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-кремового цвета.

Состав (в пересчете на 1 л готовой среды):

 Аммоний сернокислый
 - 2,2 г.

 Хлористый натрий
 - 2,2 г.

 Калия фосфат однозамещенный
 - 0,45 г.

 Натрий фосфорнокислый двузамещенный
 - 0,6 г.

 Экстракт автолизированных дрожжей осветленный
 - 1,2 г.

 Натрий малоновокислый
 - 3,3 г.

 Бромтимоловый синий, индикатор
 - 0,05 г.

2.5. Среда Олькеницкого. Питательная среда для дифференциации энтеробактерий, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-бежевого цвета.

Состав (в пересчете на 1 л готовой среды):

Гидролизат соевой муки - 10,0 г. Пептон ферментативный - 11,0 г. Экстракт автолизированных дрожжей осветленный - 1.3 г. - 9.8 г. Д(+)-лактоза Сахароза - 9,8 г. - 1,0 г. Глюкоза кристаллическая гидратная Мочевина (карбамид) - 9.8 г. Агар микробиологический - 13,5 г. Натрия хлорид - 5,2 г. Натрия тиосульфат, гидрат - 0,3 г. Соль Мора - 0,25 Феноловый красный, индикатор - 0,02 г..

2.6. Цитратный агар Кристенсена. Питательная среда для дифференциации энтеробактерий по признаку утилизации цитрата натрия, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок бледно-розового цвета.

Состав (в пересчете на 1 л готовой среды):

Экстракт автолизированных дрожжей осветленный - 0,54 г. Глюкоза кристаллическая - 0,2 г. Агар микробиологический - 11,0 г. L -Цистеин - 0,1 г. Натрий лимоннокислый 5,5-водный - 3.0 г. Натрий хлористый - 5,0 г. Калий фосфорнокислый однозамещенный - 1,0 г. Натрий углекислый - 0,2 г. Феноловый красный, индикатор - 0.012 г.

2.7. Фенилаланин-агар Питательная среда для дифференциации энтеробактерий по тесту дезаминирования фенилаланина, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-желтого цвета.

Состав (в пересчете на 1 л готовой среды):

 Агар микробиологический
 - 10,9 г.

 Натрий хлористый
 - 4,3 г.

 Экстракт автолизированных дрожжей осветленный
 - 2,9 г.

 L-Фенилаланин
 - 1,8 г.

 Натрий фосфорнокислый двузамещенный
 - 0,1 г.

2.8. Среды Гисса. Питательные среды для идентификации энтеробактерий, сухие

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок кремового или сероватого цвета.

Состав (в пересчете на 1 л готовой среды):

 Пептон ферментативный
 - 4,8 г.

 Натрия хлорид
 - 4,0 г.

 Агар микробиологический
 - 3,0 г.

 Калий фосфорнокислый двузамещенный
 - 0,2 г.

 Натрий углекислый
 - 0,02 г.

Бромкрезоловый пурпурный, индикатор или индикатор BP (аурин, анилиновый голубой 1:1)

Глюкоза кристаллическая гидратная или Д(+)-лактоза, или мальтоза или маннит, или сахароза, или дульцит, или сорбит -4.0 г.

2.9. БТН-Клиглер-агар. Питательная среда для первичной идентификации энтеробактерий, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-сиреневого цвета.

Состав (в пересчете на 1 л готовой среды):

Пептон ферментативный сухо - 20,5 г. Экстракт автолизированных дрожжей осветленный - 2.3 г. - 10,0 г. Д(+)-лактоза Глюкоза кристаллическая гидратная - 1.0 г. Натрий хлористый - 5,0 г. Натрий сернистокислый - 0.3 г. Натрий серноватистокислый - 0,3 г. Натрий углекислый - 0,4 г. Агар микробиологический - 12,0 г. Железо сернокислое 7-водное - 0,2 г. Феноловый красный, индикатор - 0,04 г.

2.10. Среда Ресселя. Питательная среда для первичной идентификации энтеробактерий, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок желтого цвета.

Состав (в пересчете на 1 л готовой среды):

Пептон ферментативный, сухой $-13.0 \ \Gamma$. Экстракт автолизированных дрожжей осветленный $-1,5 \ \Gamma$. Д(+)-лактоза $-10,5 \ \Gamma$. Глюкоза кристаллическая гидратная $-1,0 \ \Gamma$. Агар микробиологический $-10,5 \ \Gamma$. Натрий хлористый $-3,5 \ \Gamma$. Бромтимоловый синий водорастворимый, индикатор $-0,03 \ \Gamma$.

2.11. Среда Симмонса. Питательная среда для идентификации энтеробактерий, сухая.

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-бежевого цвета.

Состав (в пересчете на 1 л готовой среды):

 Аммоний фосфорнокислый
 - 2,0 г.

 Калия фосфат однозамещенный
 - 0,7 г.

 Магний сернокислый 7-водный
 - 0,8 г.

 Натрий лимоннокислый трехзамещенный
 - 3,0 г.

 Агар микробиологический
 - 11,5 г.

Бромтимоловый синий водорастворимый, индикатор

2.12. Среда с лизином. Питательная среда для идентификации энтеробактерий по наличию у них фермента декарбоксилазы, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-бежевого цвета.

Состав (в пересчете на 1 л готовой среды): Пептон ферментативный, сухой - 2,9 г. Гидролизат соевой муки ферментативный - 1.0 г. Глюкоза кристаллическая гидратная - 0.9 г. Кормовой концентрат L -лизина - 6.2 г. Бромтимоловый синий водорастворимый, индикатор - 0.035 г. Контрольная среда для среды с лизином

Пептон ферментативный, сухой - 2,9 г. Гидролизат соевой муки ферментативный - 1,0 г. Глюкоза кристаллическая гидратная - 0,9 г. Бромтимоловый синий водорастворимый, индикатор - 0,035 г.

2.13. Среды глюкозо-пептонная, лактозо-пептонная (типа Эйкмана). Питательные среды для накопления энтеробактерий, последующего определения коли-титра и коли-индекса в воде и обнаружения Esherichia coli и колиморфных бактерий, сухие

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-бежевого цвета.

Состав (в пересчете на 1 л готовой среды):

- 10,0 г. Пептон ферментативный, сухой - 5,2 г. Глюкоза кристаллическая гидратная или Д(+)-лактоза - 4,8 г. Натрий хлористый Бромтимоловый синий водорастворимый - 0,026 г.

2.14. Среда элективная солевая. Питательная среда для выделения стафилококков, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок желтого цвета.

Состав (в пересчете на 1 л готовой среды):

Пептон ферментативный, сухой - 5,0 г. Гидролизат рыбный ферментативный - 8,0 г. Экстракт автолизированных дрожжей осветленный - 1.4 г. Натрий хлористый - 85,0 г. Агар микробиологический (для плотной среды) - 11,0 г. Натрий углекислый - 0,3 г. Натрий фосфорнокислый двузамещённый безводный - 0,3 г.

2.15. Маннит-солевой агар. Среда № 10 для выделения и идентификации стафилококков, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-бежевого цвета.

Состав (в пересчете на 1 л готовой среды):

Пептон ферментативный, сухой - 9,7 г. Д(-) маннит - 9,7 г. Натрий хлористый - 75,1 г. Агар микробиологический - 15,0 г. Экстракт автолизированных дрожжей осветленный - 1,1 г Натрий углекислый - 0.4 г. Феноловый красный водорастворимый - 0.02 г.

2.16. Среда Сабуро. Питательная среда для культивирования дрожжевых и плесневых грибов, сухая

Представляет собой мелкодисперсный гомогенный, светочувствительный порошок светло-желтого цвета.

гигроскопичный,

Состав (в пересчете на 1 л готовой среды):

 Пептон ферментативный сухой
 - 7,0 г.

 Гидролизат соевой муки ферментативный
 - 3,0 г.

 Глюкоза кристаллическая гидратная
 - 40,0 г.

 Экстракт автолизированных дрожжей осветленный
 - 4,0 г.

 Агар микробиологический (для плотной среды)
 - 12,0 г.

2.17. Среда АГВ. Среда для определения чувствительности микроорганизмов к антибиотикам, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-кремового цвета.

Состав (в пересчете на 1 л готовой среды):

Агар микробиологический - 10,3 г. Пептон ферментативный, сухой - 9,2 г. Гидролизат соевой муки ферментативный, сухой - 9,2 г. - 3,7 г. Экстракт автолизированных дрожжей осветленный Натрий хлористый - 3,3 г. Глюкоза кристаллическая гидратная - 0,9 г. Натрий фосфорнокислый двузамещенный - 0,9 г. Крахмал растворимый - 0,5 г.

2.18. Среда БТН-1. Питательная среда БТН №1 для контроля микробной загрязненности, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-кремового цвета.

Состав (в пересчете на 1 л готовой среды):

Пептон ферментативный, сухой $-20,0\ \Gamma$. Экстракт автолизированных дрожжей осветленный $-3,0\ \Gamma$. Агар микробиологический $-12,0\ \Gamma$. Натрия хлорид $-5,0\ \Gamma$.

2.19. Среда БТН-3. Питательная среда БТН №3 для контроля микробной загрязненности, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок от серовато-бежевого до розоватого цвета.

Состав (в пересчете на 1 л готовой среды):

 Пептон ферментативный, сухой
 - 20,0 г.

 Натрий фосфорнокислый двузамещенный
 - 8,0 г.

 Калий фосфорнокислый однозамещенный
 - 3,0 г.

 Глюкоза кристаллическая гидратная
 - 10,0 г.

 Феноловый красный, индикатор
 - 0,06 г.

 Малахитовый зеленый, индикатор
 - 0,015 г.

 Экстракт автолизированных дрожжей осветленный
 - 1,0 г.

2.20. Среда БТН-8. Питательная среда БТН №8 для контроля микробной загрязненности, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-желтого цвета.

Состав (в пересчете на 1 л готовой среды):

Пептон ферментативный, сухой	- 7,0 г.
Натрия хлорид	- 5,0
Натрий фосфорнокислый двузамещенный	- 2,5 г.
Глюкоза кристаллическая гидратная	- 2,5 г.
Экстракт автолизированных дрожжей осветленный	- 3,0 г.

2.21. Магниевая среда. Селективная питательная среда обогащения для бактерий poda Salmonella, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-кремового цвета.

Состав (в пересчете на 1 л готовой среды):

Пептон ферментативный, сухой	- 4,0 г.
Магний хлористый	- 38,5 г.
Экстракт автолизированных дрожжей осветленный	- 1,8 г.
Хлористый натрий	- 7,2 г.
Калий фосфорнокислый однозамещенный	- 1,5 г.
Бриллиантовый зелёный	- 0,0045 г.

2.22. Среда Китта-Тароцци. Среда для культивирования анаэробных микроорганизмов, сухая

Состоит из 2 компонентов.

Компонент №2 представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-кремового цвета.

Состав (в пересчете на 1 л готовой среды):

Компонент №1 – печень говяжья, вареная, измельчённая и высушенная сублимационным методом, - 30.0 г.

Компонент №2 – модифицированный бульон в составе, г/л:

Пептон ферментативный, сухой	- 10,0 г.
Гидролизат соевой муки ферментативный, сухой	- 9,5 г.
Экстракт автолизированных дрожжей осветленный	- 1,5 г.
Натрия хлорид	- 4,6 г.
Агар микробиологический	- 1,0 г.
Глюкоза кристаллическая гидратная	- 5,0 г.
Натрий углекислый	- 0,4 г.

2.23. Среда Кесслера. Среда для выделения энтеробактерий по признаку ферментации лактозы, сухая

Представляет собой мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок светло-кремового цвета.

Состав (в пересчете на 1 л готовой среды):

- 4,0 г.
- 4,0 г.
- 8,0 г.
- 4,0 г.
- 0,024 г.
- 0,2 г.

В базовом варианте комплектации каждая питательная среда должна быть расфасована по 495-505 г в банки полиэтиленовые, герметично укупоренные крышками навинчиваемыми. На этикетке банки помимо обязательных элементов маркировки должны быть приведены положения настоящей инструкции, касающиеся назначения готовой среды, правил ее приготовления и использования.

По желанию потребителя масса сухой среды в индивидуальной упаковке (банке) может быть изменена.

3. НАЗНАЧЕНИЕ ГОТОВОЙ СРЕДЫ, ЕЕ ПРИГОТОВЛЕНИЕ И ПРАВИЛА ИСПОЛЬЗОВАНИЯ

3.1. Среда Кода

Жидкая питательная среда для выделения и дифференциации энтеробактерий по признаку ферментации лактозы при микробиологическом контроле пищевых продуктов и объектов внешней среды.

Сухую среду в количестве 32 г размешать в 1 л воды очищенной, кипятить 1-2 мин, профильтровать через бумажный фильтр, охладить, откоррективать (при необходимости) рН до 7,6-8,0, вновь довести до кипения и разлить по 5 мл в стерильные пробирки.

Готовая к употреблению среда должна быть прозрачной зеленовато-синего цвета. Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 44-48 ч при температуре 37 °C Рост микроорганизмов, ферментирующих лактозу, приводит к диффузному помутнению среды и меняет цвет среды на желтый. Рост микроорганизмов, не ферментирующих лактозу, приводит только к диффузному помутнению среды.

3.2. Среда Левина

Плотная питательная среда для выделения и дифференциации энтеробактерий из исследуемого материала по признаку ферментации лактозы.

Сухую среду в количестве 40 г размешать в 1 л воды очищенной, довести до кипения и кипятить до полного расплавления агара (2-3 мин), профильтровать через ватно-марлевый фильтр, разлить в стерильные бутылки и стерилизовать автоклавированием при температуре 112 °C в течение 20 мин. Стерильную среду охлаждить до температуры 45-48°C и разлить в стерильные чашки Петри; после застывания агара подсущить чашки при температуре 37 °C в течение 40-60 мин. Цвет готовой среды должен быть фиолетово-коричневый.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 $^{\circ}\mathrm{C}$.

Посевы исследуемых образцов инкубировать 18-48 ч при температуре 37°С Контроль роста визуальный — по наличию или отсутствию и внешнему виду колоний. Лактозоположительные микроорганизмы образуют непрозрачные колонии от светло-сиреневого до фиолетового цвета с металлическим блеском или без него. Лактозоотрицательные микроорганизмы образуют прозрачные или полупрозрачные бесцветные колонии (могут образовывать колонии бледно-розового цвета).

3.3. БТН-Эндо-агар

Плотная питательная среда для выделения и дифференциации энтеробактерий по признаку ферментации лактозы.

 $48\ \Gamma$ сухой среды размешать в $1\ л$ воды очищенной, кипятить до полного расплавления агара, при необходимости профильтровать через ватно-марлевый фильтр и снова довести до кипения. Среду охладить до температуры $40\text{-}50\ ^{\circ}\mathrm{C}$, разлить в стерильные чашки Петри. После застывания подсущить в течение $35\text{-}45\ \text{мин}$ при температуре $37^{\circ}\mathrm{C}$.

Готовая к употреблению среда должна быть прозрачной бледно-розового цвета.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 $^{\circ}\mathrm{C}$.

Посевы исследуемых образцов инкубировать 18-20 ч при температуре 37 °C Контроль роста визуальный — по наличию или отсутствию и внешнему виду колоний. Лактозоотрицательные микроорганизмы образуют прозрачные или полупрозрачные бесцветные колонии (могут образовывать колонии бледно-розового цвета). Лактозоположительные — непрозрачные колонии малинового цвета с металлическим блеском или без него.

з. 4. Среда с малонатом натрия

Жидкая питательная среда для родовой идентификации энтеробактерий.

10 г сухой среды развести в 1 л воды очищенной, кипятить 1-3 мин до полного растворения, при необходимости профильтровать через бумажный фильтр. Разлить по 2-3 мл в стерильные пробирки. Автоклавировать в течение 15 мин при температуре 121 °C.

Готовая к употреблению среда должна быть прозрачной зеленого цвета.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 18-20 ч при температуре 37 °C Рост микроорганизмов, утилизирующих малонат натрия, приводит к диффузному помутнению среды и сопровождается изменением ее цвета с зеленого на синий. Рост микроорганизмов, не утилизирующих малонат натрия, дает только помутнение среды.

3.5. Среда Олькеницкого

Плотная питательная среда для первичной идентификации энтеробактерий по их способности ферментировать глюкозу и лактозу, образовывать сероводород и расщеплять мочевину.

72 г сухой среды развести в 1 л воды очищенной, довести до кипения. Кипятить 3 мин, фильтровать через бумажный фильтр. Разлить по 6,5-7,5 мл в стерильные пробирки и стерилизуют в течение 15 мин при температуре 100° C. После стерилизации среду скосить так, чтобы высота столбика составляла 2,0-2,5 см..

Готовая к употреблению среда должна быть прозрачной красновато-розового цвета.

Готовую среду до использования можно хранить в темном месте не более 5 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 20-24 ч при температуре 37 °С При росте микроорганизмов ферментирующих глюкозу, наблюдается пожелтение столбика среды. Газообразование сопровождается разрывами (появлением пузырьков) в столбике среды. В случае ферментации лактозы происходит пожелтение скошенной части среды. В случае образования сероводорода наблюдается почернение столбика. Расщепление мочевины сопровождается изменением в малиновый цвет всей среды или только скошенной её части, при этом может наблюдаться маскировка ферментации глюкозы и лактозы.

3.6. Цитратный агар Кристенсена

Плотная питательная среда для дифференциации энтеробактерий по признаку угилизации цитрата натрия, сухая.

21 г сухой среды размешать в 1 л очищенной воды, нагреть до кипения, кипятить 2-3 мин до полного расплавления агара, при необходимости профильтровать через ватно-марлевый фильтр, разлить в пробирки по 5 мл, автоклавировать в течение 20 мин при температуре 112°C, затем скосить, оставляя столбик среды высотой 5 см.

Готовая к употреблению среда должна быть прозрачной желтовато-красного цвета до подведения рН. Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 20-72 ч при температуре 37 °C Рост микроорганизмов, угилизирующих цитрат, сопровождается изменением цвета среды на розовый. При росте микроорганизмов, не угилизирующих цитрат, цвет среды не изменяется.

3.7. Фенилаланин-агар

Плотная питательная среда для идентификации энтеробактерий по их способности дезаминировать фенилаланин.

20 г сухой среды развести в 1 л очищенной воды, кипятить 1-3 мин, при необходимости профильтровать через ватно-марлевый фильтр и разлить в пробирки по 5 мл, автоклавировать 20 минут при температуре 121 °C, скосить без столбика.

Готовая к употреблению среда должна быть прозрачной бледно-желтого цвета.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 $^{\circ}$ C.

Посевы исследуемых образцов инкубировать 20-24 ч при температуре 37 °C. Нанесение 2-3 капель 10% водного раствора треххлористого железа на культуру микроорганизма, дезаминирующего фенилаланин, изменяет цвет среды с желтого на зеленый; культура микроорганизма, не дезаминирующего фенилаланин, при этом не изменяет цвет среды.

3.8. Среды Гисса

Полужидкая питательная среда для идентификации энтеробактерий по тесту ферментации одного из углеводов (лактозы, глюкозы, сахарозы, мальтозы) или многоатомного спирта маннита или дульцита.

16 г сухой среды размешать в 1 л очищенной воды, кипятить 2-3 мин до полного расплавления агара, фильтровать через ватно-марлевый фильтр, разлить по 4 мл в стерильные пробирки и автоклавировать в течение 20 мин при температуре 112°С. Готовая среда должна быть прозрачной фиолетово-розового (свекольного) или розового цвета

Готовую среду до использования можно хранить в темном месте не более 14 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубируют 18-20 ч при температуре 37 °С. При росте микроорганизмов, ферментирующих углевод, наблюдается изменение цвета среды с индикатором ВР с розового на голубовато-фиолетовый, или с индикатором бромкрезоловый пурпурный с фиолетово-розового на желтый. Газообразование сопровождается появлением пузырьков в столбике среды или на ее поверхности. Рост микроорганизмов, не ферментирующих углевод, не изменяет цвет среды.

3.9. БТН-Клиглер-агар

Плотная питательная среда для первичной идентификации энтеробактерий по их способности ферментировать глюкозу и лактозу, образовывать сероводород.

52 г сухой среды размешать в 1 л очищенной воды, нагреть до кипения, кипятить 3- 5 мин до полного расплавления агара, при необходимости профильтровать через ватно-марлевый фильтр, разлить в пробирки по 7 мл, стерилизовать в течение 20 мин при температуре 112° C, затем скосить, оставляя столбик среды высотой 2,5-3 см.

Готовая к употреблению среда должна быть прозрачной темно-красного цвета.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 $^{\circ}\mathrm{C}$.

Посевы исследуемых образцов инкубировать 46-48 ч при температуре 37 °C. При росте микроорганизмов, ферментирующих лактозу, наблюдается пожелтение скошенной части агара, глюкозы пожелтение столбика среды. Газообразование сопровождается образованием пузырьков, разрывов, отслоением от стенок. Образование сероводорода сопровождается почернением среды в столбике, а при слабом образовании – почернением на грани столбика и скошенной части или реже, на дне пробирки. Рост микроорганизмов, не ферментирующих лактозу и глюкозу, не влияет на исходный цвет среды

3.10. Среда Ресселя

Плотная питательная среда для первичной идентификации энтеробактерий по признаку ферментации лактозы и глюкозы.

40 г сухой среды размешать в 1 л воды очищенной, кипятить 1-2 мин до полного расплавления агара, при необходимости профильтровать через ватно-марлевый фильтр, разлить по 6-8 мл в стерильные пробирки и автоклавировать в течение 20 мин при температуре 112 °C, после чего среду в пробирках скосить, оставив столбик высотой 2,5-3 см.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 $^{\circ}\mathrm{C}$.

Посевы исследуемых образцов инкубировать 18-20 ч при температуре 37 °C. При росте микроорганизмов, ферментирующих лактозу, наблюдается пожелтение скошенной части агара, при ферментации глюкозы — пожелтение столбика среды; газообразование сопровождается образованием пузырьков, разрывов, отслоением от стенок. Рост микроорганизмов, не ферментирующих лактозу и глюкозу, сопровождается посинением среды, либо сохраняется исходный зеленый цвет.

3.11. Среда Симмонса.

Плотная питательная среда для идентификации энтеробактерий по способности утилизировать цитрат натрия.

18 г препарата развести в 1 л очищенной воды, кипятить 1-3 мин, при необходимости профильтровать через ватно-марлевый фильтр, разлить в пробирки по 7 мл, автоклавировать в течение 20 мин при температуре 112°C. Расплавленную среду скосить без столбика.

Готовая к употреблению среда должна быть быть прозрачным синего цвета с зеленоватым оттенком. После доведения pH 6,6-7,0 – зеленого цвета

Готовую среду до использования можно хранить в темном месте не более 10 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 46-120 ч при температуре 37 °C. Рост микроорганизмов, способных утилизировать цитрат натрия, меняет цвет среды с зеленого на синий.

3.12. Среда с лизином.

Жидкая питательная среда для идентификации энтеробактерий по наличию у них фермента декарбоксилазы.

11 г среды размешать в 1 л очищенной воды, довести до кипения, кипятить 1-3 мин до полного растворения, остудить до 37°C и откорректировать рН до 5,9-6,1. Снова довести до кипения и профильтровать. Среду разлить в пробирки по 3 мл и автоклавировать в течение 20 минут при температуре 112°C.

Контрольную (без лизина) питательную среду готовить аналогично, используя навеску сухой среды 6,0 г.

Готовая к употреблению среда должна быть прозрачной зеленовато-желтого цвета.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 24-36 ч при температуре 37 °C.

При положительном результате (утилизация лизина) в пробирках с исследуемыми культурами среда мутнеет и изменяет цвет с зеленовато-желтого на синий. В пробирках с культурами, ферментирующими глюкозу, цвет среды меняется на жёлтый.

При посеве на контрольную среду (без лизина) и лизинположительные, и лизинотрицательные микроорганизмы вызывают помугнение среды и изменение её цвета с зеленовато-желтого на жёлтый.

3.13. Среды глюкозо-пептонная, лактозо-пептонная (типа Эйкмана)

Жидкие питательные среды для накопления энтеробактерий, последующего определения коли-титра и коли-индекса в воде и обнаружения *Esherichia coli* и колиморфных бактерий, сухие.

20 г. среды растворить в 1 л очищенной воды, кипятить 1-3 мин., при необходимости профильтровать через бумажный фильтр. Разлить в пробирки с поплавками по 5 мл.

Стерилизовать при температуре 112°C в течение 20 мин.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 18-22 ч при температуре 37 °C.

Для засева использовать по 1 мл исследуемых проб (воды, смывов и др.)

Микроорганизмы, ферментирующие глюкозу или лактозу дают диффузное помутнение среды с изменением ее цвета на желтый, при газообразовании в поплавке образуется воздушный пузырек. Микроорганизмы, не ферментирующие глюкозу или лактозу дают диффузное помутнение среды без изменения ее цвета и без газообразования.

3.14. Среда элективная солевая

Жидкая или плотная питательная среда для выделения стафилококков при микробиологическом контроле.

Приготовление жидкой среды

98 г сухой среды размешать в 1 л воды очищенной, довести до кипения, кипятить 1-3 мин до полного растворения, при необходимости профильтровать через бумажный фильтр, разлить по 5 мл в стерильные пробирки. Стерилизовать в течение 15 мин при температуре 121°C.

Готовая среда должна быть прозрачной, светло-желтого цвета.

Готовую среду до использования можно хранить в темном месте не более 10 сут при температуре 2-8 °C.

Приготовление плотной питательной среды

 $111~\rm r$ сухой среды размешать в $1~\rm n$ воды очищенной, довести до кипения, кипятить $1-3~\rm m$ ин до полного растворения, при необходимости профильтровать через ватно-марлевый фильтр. Стерилизовать при температуре $121^{\rm o}$ C в течение $15~\rm m$ ин. Среду охладить до $45-50^{\rm o}$ C, разлить в стерильные чашки Петри, после застывания среды чашки подсушить в течение $40-60~\rm m$ ин при температуре $37~\rm C$.

Готовая среда должна быть прозрачной, светло-желтого цвета.

Готовую среду до использования можно хранить в темном месте не более 10 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 44 - 48 ч при температуре 37 °C.

На жидкой среде рост стафилококков регистрируется по помутнению среды, на плотной – по появлению на чашках изолированных непрозрачных окрашенных колоний.

3.15. Маннит-солевой агар

Плотная питательная среда для идентификации клинически значимых культур стафилококков.

111 г сухой среды развести в 1 л воды очищенной, довести до кипения, кипятить 1-3 мин до полного растворения. Стерилизовать в течение 20 мин при температуре 112°C. После охлаждения среды до 48 °C разлить в стерильные чашки Петри. После застывания среды чашки подсущить в течение 35-45 мин при температуре 37°C.

Готовая среда должна быть прозрачной, красно-оранжевого цвета.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 $^{\circ}$ C.

Посевы исследуемых образцов инкубировать 18-24 ч при температуре 37 °C.

S. aureus образует желтые колонии; S. epidermidis - красные колонии.

3.16. Среда Сабуро

Жидкая или плотная питательная среда для культивирования дрожжей, плесени и ацидофильных бактерий.

Приготовление жидкой среды

54 г сухой среды развести в 1 л воды очищенной, довести до кипения, кипятить 1-3 мин до полного растворения, охладить, откорректировать рН (5,5-5,7), разлить по 5 мл в стерильные пробирки. Стерилизовать в течение 20 мин при температуре 112°C.

Готовая среда должна быть прозрачной, светло-бежевого цвета.

Готовую среду до использования можно хранить в темном месте не более 10 сут при температуре 2-8 °C.

Приготовление плотной среды

66 г сухой среды развести в 1 л воды очищенной, довести до кипения, кипятить 1-3 мин до полного растворения, охладить, откорректировать рН (5,5-5,7). Снова довести до полного расплавления агара, при необходимости профильтровать через ватно-марлевый фильтр. Стерилизовать при температуре 112°C в течение 20 мин. Среду охладить до 45-50°C, разлить в стерильные чашки Петри, после застывания среды чашки подсушить в течение 35-45 мин при температуре 37°C.

Готовая среда должна быть прозрачной, светло-бежевого цвета.

Готовую среду до использования можно хранить в темном месте не более 10 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 48-120 ч при температуре 37 °C.

Aspergillus niger дает на жидкой среде незначительное диффузное помутнение; на плотной среде - пушистый рыхлый серовато-белый мицелий, на котором образуются коричнево-черные колонии (экзоспоры), окрашивающие колонии в черный цвет.

Candida albicans дает на жидкой среде беловатую суспензию; на плотной среде - колонии белого цвета, гладкие с ровным краем диаметром 1-2 мм.

3.17. Среда АГВ

Плотная питательная среда для определения чувствительности микроорганизмов к антибиотикам.

38 г сухой среды развести в 1 л воды очищенной, довести до кипения, кипятить 2-3 мин до полного расплавления агара, при необходимости профильтровать через ватно-марлевый фильтр. Охладить до 38°C, откорректировать рН (7,2-7,6). Стерилизовать при температуре 121°C в течение 15 мин. Среду охладить до 45-50°C, разлить в стерильные чашки Петри, после застывания среды чашки подсущить в течение 35-45 мин при температуре 37°C.

Готовая среда должна быть прозрачной, синего цвета с зеленоватым оттенком. Допускается опалесценция готовой среды или незначительный осадок, который после перемешивания равномерно распределяется в питательной среде и не влияет на рост микроорганизмов и диффузию антибиотиков.

Готовую среду до использования можно хранить в темном месте не более 10 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 18-20 ч при температуре 37 °C.

Должен быть получен рост в виде газона. Наличие и размер зон угнетения роста определяется чувствительностью исследуемых микроорганизмов к соответствующим антибиотикам.

3.18. Среда БТН-1

Плотная питательная среда для культивирования и подсчета аэробных бактерий при контроле микробной загрязненности нестерильных лекарственных средств, полупродуктов в процессе их производства, сырья, вспомогательных веществ, упаковочных материалов, воздуха производственных помещений, спецодежды, оборудования и для других бактериологических исследований.

40 г сухой среды развести в 1 л воды очищенной, кипятить до полного расплавления агара, профильтровать через ватно-марлевый фильтр. Стерилизовать при температуре 121°C в течение 15 мин. Среду охладить до 45-50°C, разлить в стерильные чашки Петри, после застывания среды чашки подсущить в течение 35-45 мин при температуре 37°C.

Готовая среда должна быть прозрачной, желтого или светло-коричневого цвета.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 18-24 ч при 37 °C. Наличие микроорганизмов, контаминирующих исследуемые образцы, выявляется по росту на чашках колоний при отсутствии роста на контрольных (незасеянных) чашках.

3.19. Среда БТН-3

Жидкая питательная среда для накопления бактерий семейства *Enterobacteriaceae* при контроле микробной загрязненности нестерильных объектов.

 $42~\rm F$ сухой среды развести в $1~\rm л$ воды очищенной, довести до кипения, кипятить $3~\rm мин$, при необходимости профильтровать через бумажный фильтр, разлить по $10~\rm mn$ в стерильные пробирки. Стерилизовать в течение $15~\rm muh$ при температуре $121~\rm ^{\circ}C$.

Готовая среда должна быть прозрачной, красного цвета, допускается легкая опалесценция.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 18-24 ч при температуре 37 °C.

Наличие микроорганизмов семейства *Enterobacteriaceae*, контаминирующих исследуемые образцы, выявляется по диффузному помутнению среды и изменению ее цвета на желтый.

3.20. Среда БТН-8

Жидкая питательная среда для получения накопительных культур микроорганизмов различных таксономических групп, в том числе синегнойной палочки и стафилококков.

20 г сухой среды развести в 1 л воды очищенной, довести до кипения. Кипятить 3 мин, при необходимости профильтровать через бумажный фильтр. Разлить по 10 мл в стерильные пробирки. Стерилизовать в течение 15 мин при температуре 121 °C.

Готовая среда должна быть прозрачной, светло-желтого цвета, допускается легкая опалесценция.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 18-24 ч при 37 °C.

Рост культур проявляется диффузным помутнением среды.

3.21. Магниевая среда

Жидкая питательная среда для микробиологического контроля объектов внешней среды, пищевых продуктов.

 $53~\rm F$ сухой среды развести в $1~\rm л$ воды очищенной, довести до кипения, кипятить $3~\rm мин$, при необходимости профильтровать через бумажный фильтр, разлить по $10~\rm mn$ в стерильные пробирки. Стерилизовать в течение $15~\rm muh$ при температуре $121~\rm ^{o}C$.

Готовая среда должна быть прозрачной, зеленого цвета.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 $^{\circ}$ C.

Посевы исследуемых образцов на среду инкубировать 20-24 ч при температуре 37 °C, после чего сделать высевы на чашки со средой Левина или Эндо. При наличии микроорганизмов, контаминирующих исследуемые образцы, высевы на чашки дадуг соответствующий рост.

3.22. Среда Китта-Тароцци

2х компонентная полужидкая питательная среда для культивирования анаэробных микроорганизмов.

32 г сухого компонента №2 развести в 1 л воды очищенной, довести до кипения, кипятить 2 мин, при необходимости профильтровать через бумажный фильтр. Приготовленный бульон (компонент №2) должен быть прозрачный светло-бежевого цвета. В пробирки с 250-300 мг. компонента №1(кусочки вареной печени высушенной сублимационным методом) добавить по 10 мл раствора компонента №2. Стерилизовать в течение 30 мин при температуре 110 °С. допускается легкая опалесценция готовой среды. Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 °С.

Посевы исследуемых образцов инкубировать 24-48 ч при температуре 37 °C Рост культур проявляется диффузным помутнением среды с образованием белого осадка на кусочках печени.

3.23. Среда Кесслера

Плотная среда для выделения энтеробактерий по признаку ферментации лактозы при бактериологическом исследовании пищевых продуктов и объектов внешней среды (вода, стоки и др.).

20 г препарата растворить в 1 л воды очищенной, довести до кипения, кипятить 2 мин, при необходимости профильтровать через бумажный фильтр, разлить по 3 мл в стерильные пробирки с поплавками (трубки Дюрхема). Стерилизовать при температуре 112°C в течение 20 мин.

Готовая среда должна быть прозрачной, фиолетового цвета цвета с легкой опалесценцией.

Готовую среду до использования можно хранить в темном месте не более 7 сут при температуре 2-8 °C.

Посевы исследуемых образцов инкубировать 24-48 ч при температуре 37 °C. Рост микроорганизмов, способных утилизировать лактозу, меняет цвет среды с фиолетового на бледнофиолетовый. В трубках Дюрхема должен накапливаться газ. При этом рост грамположительной микрофлоры отсутствует или слабо выражен.

4. МЕРЫ ПРЕДОСТОРОЖНОСТИ

- 4.1. Потенциальный риск применения набора класс 1 (Приказ МЗ РФ № 4н от 06.06.2012 г.)
- 4.2. Меры предосторожности при использовании по назначению готовых питательных сред соблюдение требований СП 1.3.2322-08 Безопасность работы с микроорганизмами III IV групп патогенности (опасности) и гельминтами и возбудителями паразитарных инфекций.
- 4.3. Утилизация сухих сред с истекшим сроком хранения и использованных готовых питательных сред в соответствии с требованиями СанПиН 2.1.7.728-99 Правила сбора, хранения и удаления отходов лечебно-профилактических учреждений.

5. СРОК ГОДНОСТИ

Срок годности сухих сред – 2 года. Среды с истекшим сроком годности применению не подлежат

6. ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

Хранение

В упаковке предприятия-изготовителя в сухом, защищенном от света месте при температуре от 2 $^{\circ}$ C до 25 $^{\circ}$ C. Замораживание не допускается.

Транспортирование

При температуре от 2 °C до 25 °C. Замораживание не допускается.

7. УСЛОВИЯ ОТПУСКА

Для учреждений здравоохранения.